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The article begins with some personal comments by the author on the outstand-
ing contributions of Michael Fisher to statistical mechanics and critical phe-
nomena. Its major aim is to trace the contributions of a number of pioneering
personalities to the early history of equilibrium statistical mechanics. Four dif-
ferent areas are considered: (1) Classical Statistical Mechanics, (2) Quantum
Statistical Mechanics, (3) Interacting Systems, and (4) The Ising Model. The
article is concerned with the development and applications of statistical
mechanics when certain basic assumptions are made. It does not deal with the
justification of these assumptions which is a sophisticated discipline of its own.
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1. INTRODUCTION

Ten years ago when we celebrated Michael Fisher’s 60th birthday I con-
tributed an account (1) of Michael’s activities at King’s College London,
before he moved to Cornell in 1966. The decade that followed was
undoubtedly the most fruitful period of Michael’s career, as well as the
most creative and exciting in statistical mechanics in this century. Of
supreme importance was Michael’s interaction with Ken Wilson, and the
seminars on critical phenomena which he ran jointly with Ben Widom at
Cornell. Ken Wilson has acknowledged the key role which they played in
his development of the Renormalization Group for critical phenomena. (2)

In 1981 the Wolf Prize in Physics was awarded jointly to Michael
Fisher, Leo Kadanoff and Ken Wilson for this development. The Wolf
Committee was following the precedent of the Nobel Committee for 1962



in their award of the Prize for the discovery of the structure of DNA. In
the wise words of Sir Lawrence Bragg (3) ‘‘It is a source of deep satisfaction
to all intimately concerned that, in the award of the Nobel Prize in 1962,
due recognition was given to the long, patient investigation by Wilkins at
King’s College (London) as well as to the brilliant and rapid final solution
by Crick and Watson at Cambridge.’’

An enormous amount of patient and painstaking work by a number
of members of the critical phenomena community provided a background
vital for Wilson’s brilliant innovation. It is not possible to award a prize to
a research community, but the Wolf Committee selected the two leading
researchers as its appropriate representatives, each of whom had made an
essential contribution to Wilson’s work.

In 1982 the Nobel Committee decided to ignore the critical phenom-
ena community, and awarded the prize to Ken Wilson alone. I am con-
vinced that the Wolf Committee got it right, and the prestigious Nobel
Committee got it wrong.

Many research workers in critical phenomena felt that all major
problems had been solved by the RG, and there was little of interest left to
explore; they transferred their attention to other fields. Not so Michael,
who continues to find areas which have been neglected, and to produce a
steady stream of fascinating and significant new results.

I have always maintained that one of my greatest contributions to
physics was to wean him away from his charismatic supervisor, Donald
Mackay, under whom he prepared a Ph.D. thesis on analogue computers,
and to interest him in the unsolved problems of statistical mechanics.
Michael kindly informed me that my Inaugural Lecture entitled ‘‘Statistical
Physics and its Problems’’ (Science Progress 43:402 (1955)) played a major
role in influencing him to change his field. In it I tried to survey briefly the
statistical mechanics of non-interacting systems, and to describe the nature
of the difficult problems which arise when interactions are taken into
account. I paid particular attention to lattice models.

The aim of the present paper is to sketch a historical background to
this lecture by identifying the pioneers who laid the foundations on which
subsequent generations were able to build. An attempt will be made to
assess the specific contribution of each of these ‘‘founding fathers.’’

2. CLASSICAL STATISTICAL MECHANICS

I spent the first part of 1958 as Visiting Professor in the University of
Maryland, at the invitation of Elliott Montroll. Soon after I arrived Elliott
delivered a lecture at the Bureau of Standards with the intriguing title ‘‘101
Years of Statistical Mechanics.’’ In his opening remarks Elliott told us that
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he had first given the lecture in the previous year to celebrate the centenary
of statistical mechanics; and he felt on principle that when he took the
trouble to prepare a lecture he was entitled to use it at least twice.

It became evident that Elliott identified the initiation of statistical
mechanics with the 1857 paper of Rudolf Clausius entitled ‘‘Über die Art
der Bewegung welche wir Warme nennen (4)’’ (English translation ‘‘The
Nature of the Motion which we call Heat’’). In this contention he had the
support of Willard Gibbs, who wrote in a tribute to Clausius (5)

The origin of the kinetic theory of gases is lost in remote antiquity and its
completion the most sanguine cannot hope to see. But a single generation has seen
it advance from the stage of vague surmises to an extensive and well established
body of doctrine. This is mainly the work of three men, Clausius, Maxwell, and
Boltzmann, of whom Clausius was the earliest in the field and has been called by
Maxwell the principal founder of the science. We may regard his paper (1857)
‘‘Über die Art der Bewegung, welche wir Warme nennen’’ as marking his definite
entry into this field, although many points were incidentally discussed in earlier
papers.

A good summary of the progress represented by this paper of Clausius
has been given by Brush. (6) Clausius was able to give a qualitative descrip-
tion in terms of molecular motions of the solid, liquid and gaseous states of
matter, of evaporation from liquid surfaces, and even of the origin of latent
heat. He then undertook mathematical calculations relating to the motion
of molecules in an ideal gas and estimated their velocities at 0°C for
hydrogen, oxygen and nitrogen.

These values were criticized by a Dutch meteorologist, C. H. B. Buys-
Ballot, (7) who pointed out that if the molecules moved as fast as Clausius
claimed, the mixing of gases by diffusion should be much faster than had
been observed. To meet this criticism Clausius wrote a second paper (8) in
1858 introducing molecular collisions into his model, with the new param-
eter of mean free path to characterize the distance traveled by molecules
between successive collisions.

There is no doubt that the two Clausius papers represented a major
step forward in the Kinetic Theory of Gases. But the role of probability
and statistics in the reasoning was marginal; in the first paper the concept
of a statistical balance determining equilibrium in evaporation from a
liquid, and the need to average over all directions of molecular motion to
determine the pressure of an ideal gas; in the second paper probability
theory is used in connection with the calculation of the mean free path. The
absence of a true statistical model is demonstrated by the assumption that
all the molecules of an ideal gas move with the same velocity.

This fault was soon corrected by Maxwell in his address at the British
Association meeting (9) in Aberdeen in September 1859.
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‘‘The author has established the following results:

1. The velocities of the particles are not uniform, but vary so that
they deviate from the mean value by a law well known in the ‘method of
least squares.’

2. Two different sets of particles will distribute their velocities, so
that their vires vivae will be equal.’’

Thus, Maxwell was already enunciating his famous velocity distribu-
tion law, and was on the way to the equipartition of energy which he
developed shortly afterwards. He went on to consider non-equilibrium
properties of gases, like diffusion.

The idea of applying statistical methods to physics was well for-
mulated in a lecture (10) entitled ‘‘Molecules’’ which Maxwell gave to the
British Association meeting at Bradford in 1873. I pointed out in my
Inaugural Lecture that Maxwell’s reasoning could, with one or two minor
changes, be put forward with complete validity at the present day. When
dealing with a large population the statistician ceases to focus attention on
the properties of any one individual and concentrates instead on average
properties. He divides the population into groups according to age, height,
weight, hair colour or education, and is guided in his analysis (if he is a
thinking statistician and not merely a collector of data) by the mathemati-
cal theory of probability. But in applying this theory he is usually beset by
two worries: is his population really large enough for the method to be
valid, and is his population thoroughly homogeneous or is one section
influenced by factors which do not apply to the remainder? Neither of these
worries exist for the population of molecules, and the population is in this
sense a statistician’s paradise. Knowing how individual molecules behave
and react with one another, can we not apply the technique of the statisti-
cian to determine the average properties of the molecular population?
These should then be identified with the properties of matter in bulk.

Brush has suggested (11) that Maxwell was alerted to probability and
statistics early in his career. Whilst still a 19 year old student in Edinburgh
he was strongly influenced by a long article published in June 1850 in the
Edinburgh Review on Quetelet’s work on statistics, and he wrote to his
friend Lewis Campbell, (12)

The true logic for this world is the Calculus of Probabilities ... as human knowl-
edge comes by the senses in such a way that the existence of things external is only
inferred from the harmonious (not similar) testimony of the different senses,
understanding, acting by the laws of right reason, will assign to different truths (or
facts, or testimonies, or what shall I call them) different degrees of probability ... .
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Of Maxwell’s many contributions to statistical physics we shall single
out two for special mention. Maxwell wished to demonstrate that the second
law of thermodynamics is not an exact law but statistical in character, with
a non-zero probability of being contravened. His 1871 book, Theory of
Heat, concluded with a section entitled ‘‘Limitations of the Second Law
of Thermodynamics.’’ In it he introduced ‘‘a being whose faculties are so
sharpened that he can follow every molecule in its course, such a being,
whose attributes are still as essentially finite as our own, would be able to
do what is at present impossible to us.’’ By opening or closing a trap-door
appropriately to allow fast molecules to move from a vessel A to a vessel B,
and slow molecules to move from B to A he could raise the temperature of
B and lower the temperature of A in contradiction to the Second Law. The
term Maxwell’s demon was coined by William Thomson in 1874.

This product of Maxwell’s fertile imagination has engaged the attention
of leading scientists (e.g., L. Brillouin, L. Szilard, D. Gabor, R. Landauer,
C. H. Bennett) almost continuously during the 130 years which followed.
Just over 10 years ago a reprint collection was published on this topic; (13)

and the opening paragraph of a long two-part research paper, published
even more recently, provides a good summary of the situation. (14)

Maxwell’s demon is the source of a literature that has no apparent end—the most
prestigious scientific journals, including Physical Review and Physical Review
Letters, continue to publish articles on this topic. It is a topic that is considered to
be important enough to merit editorials in Nature (15) and New Scientist. (16)

The second contribution illustrates Maxwell’s remarkable intuition. In
a lecture delivered to the Chemical Society (17) in 1875, Maxwell calculated
the specific heat of a gas of molecules with n degrees of freedom. He found
that the ratio c of Cp the specific heat at constant pressure, to Cv the speci-
fic heat at constant volume, should be of the form (2+n+e)/(n+e), where
e is a positive quantity of unknown value relating to the stored energy of
the molecule. For a monatomic molecule n=3, e=0 (no stored energy),
c=5/3, a value which Maxwell described as ‘‘too great for any real gas.’’
(When monatomic gases were discovered some years later there was
agreement with experiment.) For a diatomic molecule n=6, and the largest
possible value of c (corresponding to e=0) is 1.33; but the experimental
values for several gases are found to be 1.408. Maxwell continued ‘‘I have
now put before you what I consider to be the greatest difficulty yet
encountered by the molecular theory.’’

Maxwell had put his finger on the major failure of the classical theory
of the specific heats of gases; this was only corrected when the quantum
theory allowed for frozen in modes which do not contribute to the specific
heat.
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Like Maxwell, the ideas of probability and statistics permeate Boltz-
mann’s writings. (18, 19) It is reasonable to regard Boltzmann as the initiator
of statistical mechanics as taught in the 20th century. Boltzmann (20) intro-
duced an assembly consisting of a large number, N, of molecules of an
ideal gas, whose interactions may be neglected, but which may be in a gra-
vitational field. A microstate of the gas is defined by specifying the energies
of individual molecules; classical theory allows these energies to vary con-
tinuously, but Boltzmann assumed that they were all multiples J1, J2,..., JN

of a small discrete energy e which would ultimately be allowed to tend to
zero. The total energy of the assembly E (=Je) is constant, and can be
distributed in a large number of different ways among the N molecules.
Boltzmann made an important new basic assumption that all microstates
(which he called complexions) have the same a priori probability. A state in
which a specific molecule has energy Er (=Jre) can be called a macrostate.
The probability Pr of the macrostate is then proportional to the number of
microstates in which the remaining energy E − Er is distributed among the
other (N − 1) molecules. This is a very large number, and using asymptotic
approximations, Boltzmann was able to establish the relation which carries
his name

Pr 3 exp(− Er/kT) (1)

Boltzmann felt the need to justify his equal a priori probability
assumption for microstates, and in 1871 he advanced what afterwards came
to be known as the ergodic hypothesis (21): that a complex dynamical system
with many degrees of freedom will over a long period spend the same
amount of time in each microstate. The average value of any property of
the system taken over such a long period will be equal to the average value
taken over all microstates, and for the classical systems with which he was
concerned this meant averaging over the appropriate phase space.

Some years later (22) Boltzmann formulated the method of maximum
probability in the treatment of a gas which afterwards became the standard
procedure in statistical mechanics. He defined a collection of microstates in
which n0, n1,..., np molecules had energies (0, E0, E1, E2,..., Ep), showed that
it had statistical weight

W=
n!

n0! n1! · · · np!
(2)

The equilibrium state is obtained by maximizing. W subject to the restrictions

n0+n1+ · · · +np=N (3)

n1+2n2+ · · · +pnp=J (4)
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Although the ergodic hypothesis required the sum of all the terms (2), this
could be replaced by the maximum term to the order of approximation
required. He used the Stirling approximation for ln W, and Lagrange
parameters to calculate the equilibrium values of the nr

n̄r=n̄ exp(−bEr) (5)

where n̄ and b are determined by the restrictive conditions (3) and (4).
The connection with thermodynamics was achieved by means of the

famous hypothesis for the entropy, S,

S=k ln W (6)

Formula (6) is engraved on Boltzmann’s tombstone; it was first introduced
by Planck (including the new constant k); but the formula is latent in
Boltzmann’s work. It served as a landmark in enabling physicists to
understand the nature of the mysterious entropy which had been intro-
duced by the second law of thermodynamics. Boltzmann was guided by the
fact that entropies of independent systems are additive, whereas probabil-
ities are multiplicative.

A very substantial portion of Boltzmann’s research was devoted to
irreversible processes, (nowadays called non-equilibrium statistical mechanics)
with which we are not concerned in this article. But mention should be
made of the titanic struggle in which Boltzmann engaged to demonstrate
how irreversible macroscopic behaviour can result from reversible micro-
scopic equations of motion. (23)

The term statistical mechanics was first introduced by Gibbs in 1902 in
the title of his book (24) ‘‘Elementary Principles in Statistical Mechanics.’’
Boltzmann’s method could be applied only to an assembly consisting of a
large number N, of quasi-independent molecules representing an ideal gas.
Gibbs introduced the new concept of an ensemble with which he was able
to deal with an assembly of interacting molecules representing any physical
system.

Instead of a single assembly of fixed energy E, an ensemble is a statis-
tical collection of assemblies whose energy follows a probability distribu-
tion g(E) dE. Like Boltzmann, Gibbs accepted the ergodic hypothesis, and
equilibrium properties are calculated by averaging over phase space

OEP=F Eg(E) dW, OE2P=F E2g(E) dW (7)

As in standard probability theory it can be shown that for a large variety of
models the fluctuations are proportional to N1/2, and become negligible
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compared with N for large N. OEP is then identified with the thermody-
namic internal energy, U.

The choice of g(E) determines the thermodynamic character of the
ensemble. The most useful choice which Gibbs made was

g(E) 3 exp − (E/kT) (8)

which he termed the canonical ensemble, corresponding to a constant tem-
perature T. This is because the loose connection of two independent
canonical ensembles with energies E, EŒ to form a new canonical ensemble
of energy (E+EŒ) will result in no change to the original ensembles;

g(E+EŒ)=g(E) g(EŒ) (9)

Gibbs noted that Boltzmann’s treatment, corresponding to a constant
energy, is obtained by taking a probability distribution which is zero outside
the range (E, E+dE); in modern terminology it is a delta function, d(E).
He termed this the micro-canonical ensemble. From Boltzmann’s hypothesis
the thermodynamic function which result from averaging over phase space is

F dW=exp(S/k) (10)

where the entropy S is a function of (U, V). The statistical averages are more
difficult to handle in view of the greater difficulty in using thermodynamics
with the energy as an independent variable rather than the temperature.

To find the thermodynamic function which corresponds to the canon-
ical ensemble it is necessary to define the pressure

OPP=−F
“E
“V

dW, (11)

and other analogous forces (Xi) and to calculate

dQ=dU+OPP dV+C
i
OXiP dxi, (12)

from the first law of thermodynamics. By identifying the result with the
second law, Gibbs showed that

F exp(− E/kT) dW=exp(− F/kT) (13)

where F(T, V) is the Helmholtz free energy.
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In a series of lectures on statistical thermodynamics which Schrödinger
delivered (25) in Dublin in 1944, he introduced an alternative approach to
the canonical ensemble. To keep an assembly at a constant temperature it
should be loosely connected to a heat bath, a large insulated body. The
constitution of the heat bath is irrelevant, and it could equally well consist
of a very large number, N, of identical copies of the original assembly. The
whole of the Boltzmann treatment can then be taken over, and Boltz-
mann’s relation (1) applied to our particular assembly

g(E) 3 exp − (E/kT) (14)

There is no worry about fluctuations since N can legitimately be allowed to
tend to infinity.

Schrödinger attributed this neat device to Gibbs, but I have been
unable to trace it in any of Gibbs’ publications. I suspect that it was an
idea which occurred to him whilst pondering over Gibbs’ treatment.

In dealing with the thermodynamics of heterogeneous substances
Gibbs had found it useful to introduce the chemical potential, mi, of each
species i, which plays a similar role in controlling chemical equilibrium to
that of the temperature in controlling thermal equilibrium. Just as it is
often convenient to use the temperature as an independent thermodynamic
variable rather than the energy, so it is often convenient to use the chemical
potential of a given species as a variable rather than its concentration.
In formulating the statistical mechanics of heterogeneous bodies, Gibbs
introduced the concept of a grand canonical ensemble in which an assembly
of energy E, containing n1 molecules of species 1, n2 molecules of species
2,..., nr molecules of species r, has probability distribution

exp(m1n1+m2n2+ · · · +mrnr − E/kT) dn1 · · · dnr dE (15)

Gibbs showed that when the distribution (15) is averaged over a general-
ized phase space the result is

exp(F/k) (16)

where

F(T, V, mi)=PV/T (17)

is a function from which all thermodynamic properties can be derived.
The contributions of Gibbs to statistical mechanics were fundamental

and far-reaching; but like his basic contributions to thermodynamics,
a substantial period of time elapsed before they were properly appreciated.
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According to Pais, (26) Einstein was familiar with a substantial part of
Boltzmann’s work, but not with the hypothesis (6) which he obtained
independently himself; when he became aware of Boltzmann’s priority he
referred to the formula as ‘‘Boltzmann’s Principle.’’ But Einstein’s
approach to the formula differed significantly from that of Boltzmann, and
was really complementary to it.

Boltzmann’s aim was to establish a theory of matter based on proba-
bility and statistics, and the formula served as a bridge back to thermo-
dynamics. Einstein considered instead the calculation of fluctuations in
thermodynamic systems and their experimental observation. Re-writing (6)
in the form

W=exp(S/k) (18)

and making use of thermodynamic information expressing the entropy as a
function of state, it is possible to calculate the probability of deviations
from equilibrium values. He applied this to the calculation of fluctuations
in temperature, density, pressure, etc. in a finite system.

Consider a small region of a large reservoir, which can be considered
attached to it in equilibrium. The suffix 0 will be used to refer to the reser-
voir, and it can be assumed that because it is very large the temperature T0

and the pressure P0 of the reservoir are constant; for convenience the
number of molecules n in the small region can be kept constant allowing
the volume to fluctuate. Consider a fluctuation of the small region, of
temperature change DT, volume change DV, and entropy change DS, and
internal energy change DU. The probability of this fluctuation, w, is given
from (18) by

w 3 exp(DS+DS0)/k (19)

where the total system, reservoir+small region is isolated at constant
energy and volume. Thus

DU+DU0=0, DV+DV0=0 (20)

But

1DQ
T0

2
reservoir

=
DU0+P0 DV0

T0
=−

DU+P0 DV
T0

Hence

w 3 exp[− b(DU − T0) DS+P0 DV] (21)
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The expression (21) is the basic formula from which fluctuations in
any thermodynamic variables can be calculated from standard formulae of
thermodynamics using appropriate transformations.(27) Coefficients of first
order terms must vanish since the system is in equilibrium; usually the
coefficients of the second order terms are non-zero and the fluctuations are
Gaussian; but where the coefficients vanish the behaviour will be non-
Gaussian. When the independent variables are DT and DV the second order
terms are

w 3 exp 5−
Cv

2kT2 (DT)2+
1

2kT
1“P

“V
2

T
(DV)26 , (22)

and the fluctuations in volume become large and non-Gaussian when
(“P

“V)T=0; this applies to a van der Waals critical point.
Einstein used these relations in his pioneering investigatons (28) of criti-

cal opalescense. (Smoluchowski derived similar results independently. (29))

3. QUANTUM STATISTICAL MECHANICS

It is usual to associate the origin of the quantum theory with Planck’s
1900 papers (30) in which he successfully fitted the experimental measure-
ments of black-body radiation by Lummer and Pringsheim (31) with his
famous formula

U(n, T)=
8pn2

c3

hn

[exp(hn/kT) − 1]
(23)

Kuhn has argued convincingly (32) from a detailed analysis of the sources
that the path to this formula, and the subsequent emergence of quanta of
energy, differ substantially from the picture conventionally presented. We
shall draw on his analysis to outline the part which thermodynamics and
statistical mechanics played in the development.

Thermodynamics was Planck’s first love. His detailed thesis in 1879
was based on Clausius’ work, and he subsequently followed his own indi-
vidual path. I can remember when I started graduate studies how much
inspiration I derived from his book (33) Theory of Heat which was the first
of a number of outstanding text-books (e.g., Zemansky, (34) Pippard, (35)

Callen (36)) which succeeded in demonstrating the self-contained logic and
remarkable power of thermodynamic reasoning. Planck was also familiar
with Boltzmann’s work, with his statistical treatment of an assembly of
loosely coupled systems, and with his formula (6) for the entropy.
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By a fortunate coincidence Planck moved to Berlin in 1889 where
improved experimental techniques were being used to determine the form
of black body radiation. He decided to try to fit the latest experimental
curve, using thermodynamic information available regarding black-body
radiation. Starting from Wien’s law for the temperature dependence of the
energy density at wavelength l,

U(l, T)=bl−5 exp(− a/lT); (24)

he was led (37) in a search for the relation between U and S, to propose the
simple differential equation

“
2S

“U2=−a/U2 (25)

a being a constant. But when improved measurements showed weaknesses
in Wien’s law, he modified (25) to

“
2S

“U2=−a/U(b+U)2 (26)

and this led to

U(l, T)=dl−5/[exp(D/lT) − 1]. (27)

This fitted the data extremely well, and in due course he rewrote (27) in the
traditional form (23).

In trying to find a theoretical basis for his formula Planck used
Boltzmann’s method for an assembly of resonators, but the cell size in
phase space was fixed at hn. Kuhn claims that ‘‘nothing in Planck’s writing
before 1906 reflects the idea of restricted resonator energy.’’ Kuhn also
points out that for Planck the most gratifying feature of his research was to
have produced a new constant of nature, h; the second constant, k, in his
formula he then termed Boltzmann’s constant. It is worth noting that the
relationship between the Rayleigh–Jeans formula,

U(n, T)=8pkTn2/c3

derived from classical theory, and agreeing with experiment for small n,
and the Planck formula (23) is much more sophisticated (38) than in the
conventional story of the ‘‘ultra-violet catastrophe.’’

In fact it was from Einstein’s ideas (39) on particles of light and the
photoelectric effect that the concept of a quantum of energy began to
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emerge. Einstein went on to formulate (40) his theory of the specific heats of
solids in which he made it clear that oscillators can possess energy only in
multiples of hn. He was able to account for the experimental fact that spe-
cific heats decrease to zero as T Q 0, whereas according to classical theory
they should remain constant.

Incidentally this also formed the basis for the removal of the ‘‘greatest
difficulty yet encountered by the molecular theory’’ noted by Maxwell and
mentioned above (p. 479).

With the development of the old quantum theory came the idea that
every atomic system has a discrete set of energy levels E0, E1, E2,..., Er with
degeneracy weights g0, g1, g2,..., gr. The methods of Boltzmann and Gibbs
could be applied much more readily and directly to discrete levels, and
there was no need to divide continuous phase space into small discrete
regions. Planck played a prominent part in this development, and intro-
duced the function (41)

Z= C
r

j=0
gi exp(− Ei/kT) (28)

which he called the Zustandsumme (sum over states)—hence the letter Z. It
is simply related to the Helmholtz free energy F,

F=−NkT ln Z (29)

In June 1924 Einstein received a letter from a young Bengali,
Satyendra Nath Bose, whose new derivation of Planck’s law had been
rejected. Einstein was impressed by Bose’s paper, translated the paper per-
sonally into German, and submitted it with a strong positive recommenda-
tion. Publication of the paper (42) transformed Bose’s career. The derivation
of Planck’s law was based on a particle picture in which the number of
particles is not conserved. Bose was led to Planck’s formula, even though
he does not seem to have been aware that he was using anything different
from Boltzmann statistics. (43)

The paper by Bose was followed by two papers by Einstein, (44) extend-
ing Bose’s treatment to material particles whose number is conserved. He
clarified the nature of the statistics that had been used for the identical
particles showing that the Boltzmann combinatorial factor

W=
N!

n0! n1! · · · nr!
gn0

0 gn1
1 · · · gnr

r (30)
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is replaced by

W=D
r

i=0

(gi+ni − 1)!
ni! (gi − 1)!

(31)

This leads to the equilibrium values

OniP=
gi

l exp(Ei/kT) − 1
(32)

where l is determined by

C
r

i=0
OniP=N (33)

For non-conserved particles l=1 and Bose had used a simple argument to
evaluate gi and to show that (32) leads to Planck’s law (23).

In 1925 Pauli (45) introduced his exclusion principle which states that
no two electrons can occupy the same quantum energy level. Fermi (46) and
Dirac (47) realized independently that this hypothesis would lead to different
statistics for electrons, the combinatorial formula (31) being replaced by

W=D
r

i=0

gi!
ni! (gi − ni)!

, (34)

by use of which (32) is replaced by

OniP=
gi

l exp(Ei/kT)+1
(35)

It later became clear that the wave-functions for identical particles in
quantum mechanics must be either symmetric (S) or anti-symmetric (A);
S particles satisfy (31) and because of the joint work they are reasonably
termed Bose–Einstein statistics; A particles satisfy (34) and are similarly
termed Fermi–Dirac statistics. Dirac was more exacting, and in his lectures,
and his book (48) referred to the former as Bose statistics (presumably
because the idea was due to Bose) and to the latter as Fermi statistics
(presumably because Fermi’s paper was presented several months before
his); this also provides a justification for the terms bosons and fermions.
Statistics of non-identical particles satisfy (30) and these are reasonably
termed Maxwell–Boltzmann statistics, although a more exacting attitude
might prefer Boltzmann statistics.
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R. H. (later Sir Ralph) Fowler, perhaps the leading world authority on
statistical mechanics in the 1920’s and 1930’s was the author of the first
text book on statistical mechanics after that of Gibbs. Fowler started life
as a mathematician, and he was dissatisfied with the Boltzmann method
which replaced a sum by its maximum term without an estimate of the
error involved. With C. G. Darwin he introduced (49) the use of generating
functions from combinatorial analysis, selected the coefficient required by
a contour integral, and evaluated it by the method of steepest descents;
correction terms could readily be calculated. The method was later applied
to Bose–Einstein and Fermi–Dirac statistics.

Fowler’s book originated in an Adams Prize essay for the years
1923–1924; but statistical mechanics was being applied to so many new
problems that the first edition (50) appeared only in 1929 consisting of 563
large pages. By the time the second edition appeared (51) in 1936 it had
grown to 864 pages; and with the help of E. A. Guggenheim an adapted
version (52) oriented more to the needs of physicists and chemists was
published in 1939.

These books were extremely comprehensive in their coverage and
widely used. When one talked in Cambridge about consulting Fowler, the
intention was almost always the book rather than the man. Fowler was
deeply involved in many research projects and in a variety of University
activities, and writing the books must have been a great strain. When he
passed away in 1944 at the early age of 55 the terse comment by E. A.
Moelwyn-Hughes, a well known physical chemist, ‘‘Writing Fowler killed
Fowler’’ summed up what many people were thinking.

It was Fowler (53) who borrowed the term partition function from the
theory of numbers to replace the clumsy Zustandsumme of Planck; this was
accepted universally, but the Z remained as a token reminder.

However, there are some features of Fowler which appear question-
able, particularly when the subsequent development of statistical mechanics
is taken into account. His attitude towards the Gibbs canonical ensemble is
negative. The concept is mentioned only once in the following paragraph:

There are two distinct starting points from which we may build up with equal
success a theoretical model to represent the material systems of our more or less
direct experience—the Gibbsian ensemble and the general conservative dynamical
system. Of these the Gibbsian ensemble has perhaps the advantage in logical pre-
cision, in that the whole of the necessary assumptions can be explicitly introduced
in the initial formulation of the ‘‘canonical’’ ensemble. For this reason it should
perhaps be preferred, and is preferred by some theoretical physicists. But to others
something more than success and logical rigour appears to be necessary for the
acceptance of a model which is to account to our aesthetic satisfaction for the
properties of matter. A certain ‘‘sanity,’’ or physical reality, may be demanded in
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the initial postulates and in the details of the model; particularly in so far as they
are to reproduce the well-known properties of matter. To these others the Gibb-
sian ensemble appears to be weak from this aspect, and they are led—in spite of
logical and analytical incompleteness—to prefer the conservative dynamical
system of many degrees of freedom as the more satisfactory model from which to
derive (or attempt to derive) the properties of matter. This is the model, general-
ized to include quantized systems, which will be used in this monograph.

By confining himself to the micro-canonical ensemble Fowler was
restricting the validity of his treatment to assemblies of quasi-independent
systems, and interactions could not be taken into account. This does not
seem to have been made very clear.

At a later stage Fowler did convert to the grand canonical ensemble,
and wrote a paper (54) in which he introduced the grand partition function
and enunciated its properties. A chapter of Fowler and Guggenheim is
devoted to this topic, (55) and provides a theoretical justification for the
Mayer treatment of interactions and condensation which is discussed in the
book.

Fowler also engages in a polemic on the introduction of Boltzmann’s
hypothesis particularly in the approach used by Planck. He feels that the
hypothesis should not be introduced ab initio by plausibility arguments,
and be used as a bridge from statistical mechanics to thermodynamics. The
bridge should be established ab initio, and Boltzmann’s hypothesis derived
as a theorem.

From the logical point of view this argument is valid, but Planck’s
approach has the advantage of giving the student an early insight into the
nature of entropy. He can then understand how thermodynamic equilib-
rium is achieved at temperature T in the competition between the ordering
quality of energy and the disordering quality of entropy.

Fortunately Fowler’s graduate student, G. S. Rushbrooke, remedied
the above defects in his text book (56) published in 1949. Rushbrooke lists
books in the bibliography to which he is indebted which include Fowler
and Guggenheim, and modestly adds ‘‘I only hope that the result of this
present text will be that many others are enabled to enjoy these weightier
publications, indispensable to serious research workers.’’ Personally I
found that although Rushbrooke avoided sophisticated mathematics, he
was able to provide the average physics and chemistry student with all that
he needs to master the techniques of statistical mechanics.

In 1946, as I started graduate studies, Schrödinger published a small
book of 88 pages on statistical thermodynamics to which I have already
referred. (25) I read it from cover to cover and found it extremely enlighten-
ing. In my view it certainly entitles the author to be regarded as a pioneer
in the teaching of quantum statistical mechanics.
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4. INTERACTING SYSTEMS

In my Inaugural Lecture I draw attention to the dramatic change in
analytic behaviour to be expected when statistical mechanics takes interac-
tions into account, and to the discontinuities in thermodynamic behaviour
to be anticipated. For example, one would hope to account for the con-
densation of a gas, or the melting of a solid, or the behaviour of solid
solutions near to their critical temperature. I concerned myself only with
exact methods, since Onsager’s solution of the 2-dimensional Ising model
had cast grave doubts on the value of the different approximations which
had been used previously. I suspect that it was the challenge of exact
methods which Michael found particularly attractive.

But in a historical survey one must relate to closed form approxima-
tions, particularly since they subsequently found a respectable place as
exact solutions for systems with long range forces. Fortunately I have dealt
with them at some length in my book (57) The Critical Point for which
Michael kindly contributed a Foreword. I can therefore summarize the
most important contributions, and give precise references for the reader
who seeks more information.

(a) In his thesis in 1873 van der Waals put forward the equation
which bears his name, and with the help of Maxwell, a coherent theoretical
account could be given of the behaviour of fluids, the relationship between
the liquid and vapour states, and the critical point. (58)

(b) In 1907 Pierre Weiss suggested that in a ferromagnet the interac-
tion of the elementary molecular magnets combine to provide an internal
field which must be added to the external field to obtain the true field
acting on an elementary magnetic dipole. With this hypothesis he was able
to account for the basic features of ferromagnetism, the spontaneous
magnetization at low temperatures which disappears at the Curie tempera-
ture, TC; and the magnetic susceptibility for temperatures above TC. (59)

(c) The concept of correlation in fluids was introduced by Ornstein
and Zernike to deal with light scattering in fluids and critical opalescence.(60)

This important work was largely neglected until Michael Fisher drew
attention to it, (61) and showed how it must be modified to comply with
Onsager’s exact results. (Michael was greatly helped by Uhlenbeck who
criticized a first draft in great detail).

(d) In discussing experimental results on order-disorder transitions in
alloys, Bragg and Williams introduced a new concept of long-range order,
correlations between atoms in a crystal which extend to infinity. These
correlations decrease with temperature and become zero suddenly at a
temperature which they termed the Curie point, by analogy with the Weiss
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theory of ferromagnetism. (62) I made specific reference to this concept in my
Inaugural Lecture, and suggested that it could be applied to melting. This
concept was authenticated by Onsager’s exact solution.

(e) The idea of Bragg and Williams was extended by Landau to a
variety of l-point transitions. Landau emphasized the role of symmetry in
such transitions; the symmetry of the low-temperature phase is charac-
terized by an order parameter which becomes zero at the transition
point. (63)

The year 1937 saw a development in the statistical mechanics of inter-
acting systems which looked extraordinarily promising. J. E. Mayer devel-
oped a perturbation theory for a condensing gas (64) the terms of which were
depicted diagrammatically; each diagram represented a multi-dimensional
cluster integral. For the expansion of the partition function the diagrams
were connected graphs; but when he derived the virial expansion for the
pressure he found that only multiply connected diagrams survived, and he
was able to establish this result rigorously to all orders; the survivors were
termed irreducible cluster integrals. The second virial coefficient involved
only one integral, the third one integral, and the fourth 3 integrals; the
situation looked extremely promising. If the asymptotic behaviour of the
cluster integrals could be determined a rigorous theory of condensation
would result.

The impact was great, and at a meeting in Amsterdam the same year
to commemorate the centenary of the birth of van der Waals, Uhlenbeck
noted that only 2 of the many papers presented were concerned with the
equation of van der Waals; almost all of the remainder concerned them-
selves with the exciting new developments. Max Born also presented a
paper entitled ‘‘The Statistical Mechanics of Condensing Systems,’’ Physica
4:1034 (1937) and in a second paper with the same title published (with
K. Fuchs) in Proc. Roy. Soc. A 166:391 (1938) he began as follows: ‘‘J. E.
Mayer has published with some collaborators several papers under the
same title as the present one. We consider these papers as a most important
contribution to statistical mechanics, and this opinion was shared by the
International Conference held in Amsterdam.’’

Alas the expectations failed to be fulfilled; the proposals for behaviour
in the critical region had no real basis and were subsequently falsified by
experiment. (65)

The subsequent work of Uhlenbeck and his collaborators, (66) which
introduced graph theory into statistical mechanics, clarified the back-
ground to the Mayer theory, and provided a major tool in the subsequent
series expansion work for crystalline models. Uhlenbeck showed that
although the number of multiply-connected graphs started with such
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modest numbers, they eventually grew exponentially, and for the ninth
virial coefficient 194066 multi-dimensional integrals must be evaluated.

5. ISING MODEL

I have also written at length in my book (57) on all stages of the devel-
opment of the Ising model, so I will again summarize briefly its origin and
early development, and refer the reader to the book for further details. In
1925 W. Lenz, who had been looking for a simple model which might serve
to explain ferromagnetism, proposed the model to his graduate student
E. Ising, and suggested that he investigate whether it possessed a non-zero
spontaneous magnetization. Ising was able to solve the problem in one-
dimension only where the statistical problem is quite simple, and the solu-
tion did not possess a spontaneous magnetization at any temperature
above zero. He concluded wrongly that the model would not give rise to a
spontaneous magnetization in higher dimensions. (67)

Ising was forced to leave Germany before World War 2 because of his
Jewish descent. He eventually settled in Peoria, Illinois where he taught at
a local college for the rest of his life. To the best of my knowledge he
published no other paper on physical research, or ever attended any of the
Conferences in which the Ising model was a topic of discussion. He passed
away at an advanced age a year or two ago. Thus, although Ising must be
included in the founding fathers, his rating is very weak.

In 1936 Peierls was the first to demonstrate convincingly that the two-
dimensional Ising model, at sufficiently low but non-zero temperatures,
does possess a spontaneous magnetization. (68) (Michael tells me that he
spotted a flaw in the original argument, but was pre-empted by R. B.
Griffiths, Phys. Rev. A 136:437 (1964)).

Of importance to subsequent developments was the introduction of
the lattice gas model (69) by Cernuschi and Eyring in 1939 in which the cells
of a lattice can be either occupied by a single molecule, or unoccupied
(a hole). Any two neighbouring occupied cells have an attractive interac-
tion; the fact that an occupied cell cannot accept another molecule provides
a crude representation of a hard-core repulsion, and the possibility of
varying the number of holes allows for change in free volume, one of the
essential features of a liquid. The lattice gas model is isomorphic with the
Ising model, and pioneered the exploration of the critical behaviour of
fluids.

The special simplicity of all one-dimensional chains was highlighted by
the introduction of the transfer matrix, whose largest eigenvalue determines
the partition function of an infinite chain. Three groups were independently
responsible for this innovation. Kramers and Wannier, (70) Lassettre and
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Howe, (71) and Montroll. (72) We shall devote particular attention to the
Kramers and Wannier papers which contain the following additional fea-
tures of major significance:

(a) They evaluated the transfer matrix for the Ising model in zero
field for a number of n × . strips, and discovered a transformation by
which the low temperature values can be converted into high temperature
values.

(b) Focusing attention on the fixed point which transforms into itself
they conjectured that when n becomes infinite this is the Curie temperature TC.

(c) Calculating the specific heats of finite strips at TC for small values
of n they found values which increased linearly with log n. Extrapolating to
n=. they conjectured that the specific heat of the two dimensional lattice
becomes infinite at TC.

All of these results were confirmed by Onsager, and it is legitimate to
look on these papers of Kramers and Wannier as the precursor to Onsager.

In addition they derived a small number of terms of high and low tem-
perature series expansions for the partition function. These were used to test
the accuracy of the various closed form approximations, and they concluded
that even the most sophisticated of these approximations deviates at an early
stage from the true solution. This emphasized the importance of exact work.

They did not realize that if longer series expansions were derived, the
coefficients themselves can provide information about critical behaviour.
This was my own contribution. (73)

This brings us to Onsager’s varied and massive contributions which I
discuss at length in my book. (74) I referred to some of them in my Inaugural
Lecture, and they may well have been the decisive factor which brought
Michael into the field. Their brilliance was enhanced rather than dimmed
by the RG which needed exact solutions against which it could check its
conclusions.

I am sure that Michael will join me in ending with a tribute to Elliott
Montroll from whose activities and hospitality we both benefited greatly.
Elliott was a mine of information about all that was going on in statistical
mechanics; when he learned of any new problem he shared it with all
his friends, and Onsager has described the role which Elliott played as a
catalyst in interesting him in the Ising problem. His publications do not
adequately reflect his contribution to the field, and he can unquestionably
be listed with the major pioneers. He was involved in the first diagramma-
tic expansion of correlation functions; (75) and he was particularly skilled in
writing comprehensive review articles. Many research workers learned the
essentials of a new field from such a review article.
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